The Math of Bicycles: Wheel Figure This Out (Grades 47)
Neighborhood Math Home  Math at the Mall

Math in the Park or City
 "Wheel" Figure This Out
 Gearing Up

Answers 
Career Connections  More Math Concepts
It often seems that
kids and bicycles are permanently attached during the summer time. The
mathematics and science of bicycles offers interesting questions. Bicycles
have become specialized to better accommodate a range of special purposes.
From the past when you were limited to a Stingray, a regular bike, or
a tenspeed, today you have options including the BMX, road bikes, mountain
bikes, and hybrid bikes, which are a cross between a mountain bike and
a road bike.
To develop the mathematics,
we will look at the differences among bikes. Have students bring in a
range of different types of pedalpowered vehicles. Try to include as
many different types as possible. Some suggestions include a tricycle,
a standard singlespeed bike, an old threespeed bike, a BMX bike, a
road bike, a mountain bike, and a hybrid bike.
First, we want to
compare how far each bike travels when the pedals make one complete revolution
or, in bicycle terms, "one crank of the pedal." You will need some space
to do this, and this should be done with teams walking next to the bike
turning the pedal, not riding it. You do not want to let the bike coast.
1. Do all the bikes
travel the same distance?
2. Why do the bikes
travel different distances when each was given the same single revolution
or "crank" of the pedal?
3. Look at the wheels.
For each bike, measure and record the height of each wheel. The height
of the wheel can be measured from the ground, through the center of the
wheel, to the top. This is also called the diameter of the wheel.
4. Now measure and
record how far the wheel roles if it makes one complete revolution. Start
with the valve stem at the bottom and roll the bike forward until the
valve stem is back at the bottom. Measure how far the bike traveled.
This measure is also called the circumference of the wheel.
5. Compare the height
of the wheel to the distance around. If you had to pick a number to multiply
the height by to get the distance around, what number would you chose?
6. The distance
around the wheel is a little more than 3 times the height of the wheel.
Or in math terms, the circumference is a little more than 3 times the
diameter. The actual number is pi, which is approximately 3.14. Check
and see if this relationship is true for your tires.
7. If you increase
the height of the tire by 1 inch, describe any changes to the distance
around the tire.
