Visit Your Local PBS Station PBS Home PBS Home Programs A-Z TV Schedules Watch Video Donate Shop PBS Search PBS
Teachers Powered by teachers'domain

Create a DNA Fingerprint

  • Teacher Resource
  • Posted 08.15.12
  • NOVA

DNA. It's what makes you unique. Unless you have an identical twin, your DNA is different from that of every other person in the world. And that’s what makes DNA fingerprinting possible. Experts can use DNA fingerprints for everything from determining a biological mother or father to identifying the suspect of a crime. What, then, is a DNA fingerprint and how is it made? Here, you'll find out by solving a mystery—a crime of sorts. First, you’ll create a DNA fingerprint (we'll supply the lab and all necessary materials). Then you’ll compare this DNA fingerprint to those of all seven suspects to nab the perpetrator. Ready? Let's get to work!

NOVA Create a DNA Fingerprint
VIEW
  • Media Type: Interactive
  • Size: 283.0 KB
  • Level: Grades 6-12

  • Log in to Teachers' Domain to download, share, rate, save, and match to state standards.

Source: NOVA: "The Killer's Trail" Web site

This feature originally appeared, in a different design, on the site for the NOVA program .

Background

In the last 15 years, DNA has played an increasingly important role in our legal system. Tissue evidence is now routinely collected during criminal investigations in hopes that it will provide genetic clues linking suspected criminals to crimes.

DNA profiles help forensic investigators determine whether two tissue samples -- one from the crime scene and one from a suspect -- came from the same individual. Fortunately, the genetic comparison doesn't require that investigators look at all of the DNA found in the tissue samples. That would take months or even years. Instead, by marking a small number of segments of DNA in one sample and then checking for the presence or absence of those segments in the other sample, investigators can say with some assurance whether the samples are from the same person.

How do they do it? Investigators use chemicals to cut the long strands of DNA into much smaller segments. Each segment has a specific length, but all of them share the same repeating sequence of bases (or nucleotides). The chemicals cut the segments at the beginning and at the end of the repeating string of nucleotides, so one segment might be ATCATCATCATCATC, for example, while another might be ATCATC. (The DNA segments used in forensic investigations are, of course, much longer than this.)

Investigators use a process called gel electrophoresis to separate these repeating segments according to length. Next, they introduce a small set of radioactive "markers" to the sample. These markers are segments of DNA of known length, with bases that complement the code of, and bind to, sample segments of the same length. The sample segment above (ATCATCATCATCATC), for example, would be tagged by a marker with the complementary code TAGTAGTAGTAGTAG.

Markers that do not bind to sample segments are then rinsed away, leaving in place only those markers that bound to complementary sample segments. Photographic film, which darkens when exposed to the radioactive markers, identifies the location of all marked sample segments. This film, then, becomes the DNA "fingerprint" that forensic investigators analyze.

The final step is a relatively simple matter of lining up the sample profiles side by side and comparing them for the presence or absence of segments with particular lengths. The more segments the two samples have in common, the more likely it is that the samples came from the same person.

Questions for Discussion

  • Describe the process of DNA fingerprinting.
  • In what ways is it like actual fingerprinting and in what ways is it different?
  • How conclusive is the evidence of DNA fingerprinting?
  • Where is there possibility for error?

Resource Produced by:


					WGBH Educational Foundation

Collection Developed by:


						WGBH Educational Foundation

Collection Credits

Collection Funded by:


						National Science Foundation



Related Resources

  • Forensic DNA Analysis

    This video segment from NOVA: "The Killer's Trail" investigates the potential for DNA evidence to solve murd...

  • Forensics on Trial

    Virtual autopsies, 3-D fingerprints, and digital crime scenes are making crime-solving into a more precise science.

  • Extract Your Own DNA

    Behold your very own DNA in this do-it-yourself science experiment.

  • Cracking Your Genetic Code

    We are on the brink of a new era of personalized, gene-based medicine. Are we ready for it?

  • Extracting Mummy DNA

    This video segment explains how a DNA sample is taken from a 5,000-year-old mummy and what we can learn from it.