Mother Earth has a fever

By Eli Kintisch

Nearly 200 scientists from 14 countries met last month at the famed Asilomar retreat center outside Monterey, Calif., in a very deliberate bid to make history. Their five-day meeting focused on setting up voluntary ground rules for research into cloud-brightening, giant algae blooms and other massive-scale interventions to cool the planet. It’s unclear how significant the meeting will turn out to be, but the intent of its organizers was unmistakable: By choosing Asilomar, they hoped to summon the spirit of a groundbreaking meeting of biologists that took place on the same site in 1975. Back then, scientists with bushy sideburns and split collars—the forefathers of the molecular revolution, it turned out—established principles for the safe and ethical study of deadly pathogens.

The planners of Asilomar II, as they called it, hoped to accomplish much the same for potentially dangerous experiments in geoengineering. Instead of devising new medical treatments for people, the scientists involved in planet-hacking research are after novel ways to treat the Earth. The analogy of global warming to a curable disease was central to the discussions at the meeting. Climate scientist Steve Schneider of Stanford talked about administering “planetary methadone to get over our carbon addiction.” Others debated what “doses” of geoengineering would be necessary. Most crucially, the thinkers at Asilomar focused on the idea that medical ethics might provide a framework for balancing the risks and benefits of all this new research.

Earth seen from the moon

Photo: NASA

What would it mean to apply the established principles of biomedical research to the nascent field of geoengineering? The ethicists at Asilomar—particularly David Winickoff from Berkeley and David Morrow from the University of Chicago—began with three pillars laid out in the landmark 1979 Belmont Report. The first, respect for persons, says that biomedical scientists should obtain “informed consent” from their test subjects. The second, beneficence, requires that scientists assess the risks and benefits of a given test before they start. The third, justice, invokes the rights of research subjects to whatever medical advances result from the testing. (The people who are placed at risk should be the same ones who might benefit from a successful result.)

Then Winickoff and Morrow proposed applying the Belmont principles to the study of the most aggressive forms of geoengineering—the ones that would block out the sun like a volcanic eruption, with a spray of sulfur or other particles into the stratosphere. Before we could embark on a radical intervention like that, we’d need to run smaller-scale tests that might themselves pose a risk to the environment. In much the way that a clinical drug trial might produce adverse reactions, so might a real-world trial of, say, the Pinatubo Option. Instead of causing organ failure or death in its subjects, a botched course of geoengineering might damage the ozone layer or reduce rainfall.

The problem, admitted the ethicists, is how to go about applying the Belmont rules outside of medicine. In clinical drug trials, researchers obtain consent from discrete individuals, and they can precisely define the worse-case outcome (like death). But a trial run of hazing up the stratosphere wouldn’t affect specific, identifiable people in any one town, city, or state. The climate is interconnected in many ways, some still mysterious to scientists, and so the risks of even a small-scale test in a particular location might apply across the globe. If everyone on Earth could be affected, how do you figure out whom to ask for informed consent?

One possibility would be to require that all nations of the world agree ahead of time on any tests of consequence. To many gathered at Asilomar, however, this seemed naive; speakers repeatedly invoked the failure of all-inclusive talks to cut global carbon emissions, and it would presumably be much tougher to secure an agreement on work that might damage crop yields or open a hole in the ozone. A more pragmatic approach would be to set up something like a U.N. Planet Hacking Security Council, comprising 15 or so powerful nations whose oversight of research tests would take into account the concerns of a broad swath of countries. But that undemocratic approach would surely face howls of protest.

 
SUGGESTED STORIES
  • Differing views on fracking's impact
    Studies conducted on the counties above the Marcellus and Barnett Shale for example — where extensive drilling has already taken place — present mixed economic results.
  • thumb
    Too much solar energy?
    The proliferation of privately owned solar has large power companies in Germany worried.
  • thumb
    Nominee has industry ties
    Energy secretary nominee had deep connections to industry, including as a paid adviser to BP until 2011.

Comments