Saving Notre Dame
Scientists and engineers fight to save Notre Dame Cathedral after the 2019 fire.
When the roof of Notre Dame Cathedral erupted in flames in April of 2019, firefighters battled for nine grueling hours to save the historic landmark. Still, Paris came alarmingly close to losing more than 800 years of history. Now engineers are in a different race against time: to rebuild the roof and secure the medieval structure of Notre Dame. Underneath the charred scaffolding and vaulted ceilings of the cathedral, scientists study the components of Notre Dame’s iconic structure to puzzle out how best to repair it. (Premiered November 25, 2020)
More Ways to Watch
Saving Notre Dame
PBS Airdate: November 25, 2020
NARRATOR: Notre-Dame de Paris: a treasured icon of Gothic architecture and medieval engineering, built from glass, stone and timber over the course of two centuries. For 850 years, this 226-foot-tall cathedral has been an enduring symbol at the heart of French culture and more.
JOHN DICKAS (Paris Resident/Eyewitness): Notre Dame is one of humanity’s greatest artistic and architectural achievements.
MONSIGNOR PATRICK CHAUVET (Rector, Notre Dame Cathedral): Notre Dame is not just Paris, it’s France; and beyond France, it’s the world.
NARRATOR: But on April 15th, 2019, a disaster that threatens to destroy it all strikes: a massive fire, raging out of control…
EYEWITNESS: Oh! Oh, my god!
NARRATOR: … leaves the cathedral in ruins. Now, an elite team of engineers, scientists and master craftspeople battle to save this fragile structure from a catastrophic collapse.
[Alarm Sounding]
LISE LEROUX (Stone Conservation Scientist, Research Center for French Historic Monuments): Scaffolding! On doit sortir. We must leave.
NARRATOR: Out of tragedy, an opportunity is born…
LISE LEROUX: Oh, this is a “dating fossil.”
NARRATOR: …to solve archaeological mysteries and understand the very fabric of this medieval megastructure like never before.
CLAUDINE LOISEL (Glass Conservation Scientist, Research Center for French Historic Monuments): We can identify each chemical element.
NARRATOR: Can clues from the past help save and rebuild this landmark? And can pioneering technology prevent another disaster?
LIVIO DE LUCA (Research Director, Heritage Digitization, French National Centre for Scientific Research [C.N.R.S.]): What we are producing today will be the information useable for the next generation.
NARRATOR: Saving Notre Dame, right now on NOVA.
The cathedral of Notre-Dame de Paris: an 850-year-old Gothic wonder, it’s the heart of France. The distance from Paris to all other places is traditionally measured from this iconic structure.
DANY SANDRON (Art History and Archaeology, Sorbonne University): There is a continuation, a historical continuation from the Middle Ages to nowadays, and it’s very important to build a kind of identity. Notre Dame is one of the monuments which achieved this identity.
JOHN DICKAS: For Christians, it’s a place of worship, right? And for those of us with different beliefs, it’s one of, just, this incredible artistic and historic landmark. You’ve had coronations there; you’ve had the crowning of Napoleon and King Henry. There’s just so much attached to the cathedral.
NARRATOR: But Notre Dame is much more than that. It’s also a pinnacle of medieval engineering. The cathedral can hold 9,000 worshippers, and its hundred-foot-tall walls contain more than 32,000 square feet of stained glass.
The ceiling is a series of domed Gothic vaults that hold up the cathedral from the inside. A complex 550-ton web of timber forms a cross-shaped roof, topped with 1,300 lead tiles and a 300-foot-tall central spire.
Wrapped around the church are 28 flying buttresses—limestone arches that brace the walls from the outside. And at the front, two mighty towers, with 10 massive bronze bells inside, soar over 226-feet into the sky over Paris.
DANY SANDRON: The construction took many generations. Architecture was not learned at the university, so the architects and all workers learnt mostly on site.
NARRATOR: Along the way, there were many setbacks. In 1789, at the height of the French revolution, anti-Catholic forces destroy parts of the cathedral; a newly secular France leaves Notre Dame in a state of neglect.
But when Victor Hugo writes The Hunchback of Notre Dame in 1831, it sparks a $60-million restoration that tops out the cathedral with a new roof and a 750-ton timber and lead spire. Periodic renovations continue to this day.
On April 15, 2019, Notre Dame is wrapped in 550-tons of scaffolding, as workers begin a $6-million operation to shore up the cathedral’s spire.
EYEWITNESS: Merci, ma cher Mado!
Voila Monsignor.
Merci beaucoup!
NARRATOR: Notre Dame’s rector, Father Patrick Chauvet, has finished evening worship. His world is about to be turned upside down.
PATRICK CHAUVET: (Translated from French) I stopped here because I really like Mado. She offered me a drink. She arrives and says, “Father, there’s smoke above the spire of the cathedral.” So, I left my glass and rushed immediately to check there was nobody left in the cathedral.
NARRATOR: At 6:18 p.m., a sensor detects smoke in the medieval roof timbers. The system sends a coded fire alert to the security team. Instead of heading straight for the roof, a guard is dispatched to the sacristy building nearby, to check for a fire. But he finds nothing.
He climbs up into the church attic, but by the time he gets there, he’s too late. The fire has been burning for almost 30 minutes and has spread across the roof.
JOHN DICKAS: There was this horrifyingly huge plume of smoke billowing up out of it. It was surreal. I’d never seen anything like that before. You saw the firetrucks come up alongside the cathedral, and ladders went up, and the hoses came out. You could see that the ladders were just too small for a building of this size, and the hoses were not nearly big enough for this kind of blaze. It was tragic. The resources that were available were not going to be what was needed to bring this thing under control. A lot of us realized that this fire was just going to ravage the cathedral.
MIKA (Eyewitness): (Translated from French) We looked at what was going on, but we were powerless. We couldn’t do anything. It really looked like the end of the world. It was really chaotic.
LUKE BISBY (Fire Safety Researcher, The University of Edinburgh): A delay in responding to a fire of this nature is absolutely critical. A small fire, burning locally, is a very different thing than 10 minutes later, when all of the timber elements are involved. So, in a situation like this, five, 10, 30 minutes can make all the difference.
NARRATOR: This delay will have huge repercussions. As firefighters arrive on scene, so does one of France’s Chief Architects of Historic Monuments, Rémi Fromont.
RÉMI FROMONT (Chief Architect of Historic Monuments, French State Agency for the Restoration of Notre Dame): (Translated from French) I managed to pass the police checkpoint, and I joined the firefighters.
NARRATOR: As the inferno rages at the top of the cathedral, Rémi risks his life to venture inside with the firefighters.
RÉMI FROMONT: (Translated from French) We did a tour of the cathedral several times. We checked the nave. I saw the flames and saw the blaze. I gave them all the advice that I could.
NARRATOR: Within minutes the firefighters are pumping tons of water into the roof space, but to no avail. To the horror of the growing crowd, the fire engulfs the iconic spire. The world watches helplessly as the 750-ton oak and lead masterpiece gives way.
EYEWITNESSES #1: Oooh! Oh, my god!
EYEWITNESSES #2: That is awful.
LUKE BISBY: When the spire fell into the roof, the additional ventilation will have caused more oxygen-rich air to be sucked in at the bottom of the compartment. That influx of oxygen could have caused an increase in the severity of the fire within Notre Dame.
RÉMI FROMONT: (Translated from French) All of a sudden, there was a huge, huge ball of fire rising out of the cathedral. It was spitting ash and debris that might have fallen on us, so we took shelter.
JOHN DICKAS: It was just devastating to watch. We were suddenly really aware how easily this whole thing could come down.
NARRATOR: Ninety minutes after the fire begins, the entire roof of the cathedral is ablaze. Inside, it’s become even more dangerous for Rémi and the firefighters. Getting this fire under control looks impossible.
RÉMI FROMONT: (Translated from French) The fire on the ground, smoke everywhere, a hole in the ceiling. We were trying to understand what was going on, see where the problems were, check what had collapsed and if there were other risks.
NARRATOR: A southeasterly wind picks up and pushes the blaze towards the famous bell towers.
RÉMI FROMONT: (Translated from French) If the bell towers catch fire, and the bells fall, then they will smash through everything below.
NARRATOR: Inside the ingeniously engineered 13th-century north tower, a scaffold of wooden beams holds eight bells, the biggest weighing more than four tons. If the beams burn through, they’ll spark a fata chain reaction, causing the bells to fall like wrecking balls, destroying the tower’s wooden backbone. If the tower falls, it could trigger a deadly domino effect that brings down the entire cathedral.
To avert this catastrophic collapse, the firefighters have no option but to venture deeper inside.
PATRICK CHAUVET: (Translated from French) President Macron said, “No doubt, we must send the firefighters in. The cathedral must be saved.”
RÉMI FROMONT: (Translated from French) We headed to the North tower, just when the flames had reached the belfry. The firefighters also knew it well. We were guiding each other.
NARRATOR: To douse the fire on the roof, firefighters pump water from the River Seine and feed it to fire trucks around the cathedral. But to stop the towers collapsing, they must send a team into the burning structure. Their mission: drop hoses in between the towers and fight the fire spreading from the roof.
But the steady wind doesn’t let up, and despite their efforts, the timber frame holding the bells has caught fire and could trigger the destruction of the cathedral at any moment. So, the team must drag their hoses to the top of the tower and soak the timber frame to prevent the unthinkable.
Throughout the night, the fate of Notre Dame hangs in the balance. Eventually, the firefighters get the upper hand. The flames have been beaten back and only glowing embers light up the night sky.
Nobody knows how the fire started. An investigation begins. But for now, the urgent question is: how damaged is the structure and can it ever be rebuilt?
President Macron pledges to restore the cathedral in five years.
EMMANUEL MACRON (President of France, 2017): I tell you very solemnly this evening, we will rebuild this cathedral all together.
NARRATOR: Meanwhile, the world keeps vigil for Notre Dame. Daylight reveals the full extent of the terrible destruction wrought by the fire.
The oak roof and spire are completely destroyed. Tons of toxic lead that covered the roof have been sprayed into the air, contaminating the site. Burned roof timbers cover the vaulting. Three gaping holes in the stone vaults weaken the entire structure, and the 550-ton scorched carcass of scaffolding could collapse at any moment, something unthinkable to those tasked with preserving France’s rich cultural heritage.
PHILLIPE VILLENEUVE (Chief Architect of Historic Monuments, French State Agency for the Restoration of Notre Dame): (Translated from French) I’m in front of my cathedral, which is in this state. I need to work.
NARRATOR: Phillipe Villeneuve is in charge of historic monuments in France. This is the cathedral that inspired him to become an architect.
PHILIPPE VILLENEUVE: (Translated from French) I must have been five or six years old. My parents brought me here one day, like every child from Paris. I was fascinated by this architecture. It stayed with me since.
NARRATOR: Since 2013, Phillipe has been responsible for conserving Notre Dame.
PHILIPPE VILLENEUVE: (Translated from French) It was the culmination of a dream, a dream come true. Today that dream has turned into a nightmare.
NARRATOR: The stricken cathedral is a giant house of cards. If the stone vaulting collapses, the weight of the buttresses will push in the hundred-foot walls, and Notre Dame will be no more.
PHILIPPE VILLENEUVE: (Translated from French) Thank you for being here.
NARRATOR: So, Phillipe heads up a rapid-response team: dozens of engineers, architects and scientists. Their task is to prevent a total collapse of the cathedral.
PHILIPPE VILLENEUVE: (Translated from French) From the bottom of my heart, I want to thank you all for your dedication, your approach, your passion to do a very difficult job, which is essential for the future of the cathedral.
NARRATOR: It’s not only a difficult job, it’s also hazardous. The crumbling stone vaults and twisted scaffolding make any visit inside, to investigate the stability of the structure, extremely dangerous.
LISE LEROUX: (Translated from French) On the vaults, we have the problem of the impact of the fire, and we will also have to evaluate the impact of the water used to extinguish the flames.
CARLO BLASI: (Translated from French) And we can see from here the inside of…
[ALARM SOUND]
LISE LEROUX: Go out. The scaffolding is moving. Scaffolding!
NARRATOR: Motion sensors are installed in the melted jumble of scaffolding overhead. These can be triggered by gusts of wind, a warning before a possible full-scale collapse.
LISE LEROUX: (Translated from French) It’s the alarm, because the scaffolding has moved. We must leave now.
NARRATOR: There are evacuations like this each week—necessary, but an impediment to the urgent work of stabilizing the structure.
PHILIPPE VILLENEUVE: (Translated from French) It’s very difficult to juggle all these issues. The challenge is that we have to take action very quickly. At the same time, we need to take into account the reality of this building, which is still in danger of collapse. We are still very much in the phase of the stabilization of the cathedral.
NARRATOR: To avert a catastrophic collapse, engineers could build a steel skeleton inside the nave to brace the walls. Then, even if the vaulting caves in, the walls of Notre Dame would stay standing. But it’s far too dangerous for workers to erect steelwork beneath the compromised structure.
PHILIPPE VILLENEUVE: (Translated from French) We cannot go under the vaults, because we do not know if they will fall or not.
NARRATOR: So, instead of bracing the walls from the inside, the team will build timber frames under the buttresses outside. Now, if the vaulting does fall in, the buttresses can’t push on the walls, and they won’t come tumbling down.
WORKER ONE: (Translated from French) Here’s the list of the beams we need to cut for the site.
WORKER TWO: (Translated from French) Don’t forget, they first need to cut what they’ll assemble next door.
PHILIPPE VILLENEUVE: (Translated from French) They are very difficult, because, in fact, no flying buttress is identical to another, and therefore, no support. They are made to measure.
NARRATOR: Workers at this factory race to cut and assemble around 250 tons of timber, to create the massive supports Philippe’s team needs to prop up the vaults. It’s critical each support fits perfectly beneath each flying buttress to hold its weight.
Working around and inside this space is a logistical nightmare. Two-hundred-ten tons of lead cladding covered the cathedral roof. This was mostly melted during the fire and now toxic lead dust covers every surface. The worksite is highly contaminated.
Until the site is cleaned, team members must wear full protective clothing to pass into the contaminated zone. When leaving the site, they undress, discard all clothing, carefully wash equipment, then shower, themselves. Only then can they go back to the “clean area,” even for a lunch break.
PHILIPPE VILLENEUVE: (Translated from French) It is very difficult to endure, for the workers who have had to deal for months with these procedures, which are not routine. But this whole site is not normal.
NARRATOR: But finally, five months later, all 28 flying buttresses are locked in place and the walls are safe. Now, they can turn to the next challenge: secure the melted mass of scaffolding that hangs precariously over the cathedral.
The scaffold weighs more than a jumbo jet and only rests on four spindly legs. The team plans to wrap three massive steel lattice beams around it, to tie the fragile upper parts together, then they’ll build more scaffolding on either side and lay steel beams across it.
That way workers can get inside the stricken scaffolding, to help cut off its 50,000 steel poles, a truly Herculean task. Only then can the team put up a temporary roof to protect them from the elements while they rebuild Notre Dame.
PHILIPPE VILLENEUVE: (Translated from French) It’s going to be an extremely dangerous operation. The spire has disappeared, the roof has disappeared, but the scaffolding is still there. It moves a little bit, but it’s still there.
NARRATOR: While engineers gear up to remove the scaffolding, architect Rémi Fromont and Livio De Luca begin a groundbreaking project that will combine the investigative work with new scientific analysis.
Their ambition is to create a data rich model of Notre Dame, a digital twin.
LIVIO DE LUCA: The digital twin will embed, not only the geometric structure or the visual appearance of the cathedral, but also all the scientific data coming from the studies. For example, you can click on a stone in the vaulting, and access to all the information about its physical properties, such as the provenance, but also the mechanical behavior within the entire structure.
NARRATOR: Luckily for Livio, a series of highly detailed laser scans of the cathedral have been conducted since 2006. These are brought together in this priceless 3D dynamic map, to show every stone, timber and iron nail in the structure, across time, from the 12th century to the present day.
LIVIO DE LUCA: This is an unprecedented project. The ambition is to collect all the information from the past, to pass it to the future.
NARRATOR: There’s very little firsthand information about the construction of Notre Dame or the craftspeople who built it. In the wake of the fire, new studies of the cathedral’s materials could unlock these secrets. This new data, once included in the digital twin, will provide a blueprint for the restoration and rebuild.
Inside Notre Dame, scientists begin to gather data and investigate the damage to treasured statues, murals and windows. The cathedral’s most fragile wonder, its stained glass, dates back to the 13th century. Thirty-six windows circled the lower level, 42 around the middle level and 43 around the upper level. The three famous Rose windows span up to 42 feet in diameter and are made up of over 1,100 panels of beautiful stained glass.
Miraculously, they survive the fire intact. But the intense heat that melted the cathedral’s lead covered roof means that much of the glasswork is now covered in a layer of toxic lead powder. Removing it could damage the delicate glass and be harmful to restorers.
CLAUDINE LOISEL (Glass Conservation Scientist, Research Center for French Historic Monuments): It was really painful to see the catastrophe on the T.V. I was looking to see what’s happened around the Rose Windows, and it was, of course, totally difficult to have a good idea of what happens. There is a before and after 15th April, for historical monuments, that’s for sure.
NARRATOR: Glass scientist Claudine Loisel uses a handheld digital microscope to investigate the levels of lead powder on the stained glass. She must then formulate a strategy to clean every single panel; a vast decontamination program. This window is in the back of the cathedral, in the lower level, furthest from the inferno, but it’s still badly contaminated.
CLAUDINE LOISEL: (Translated from French) Look at the amount of soot.
NARRATOR: Fortunately, these windows have not been cleaned for a hundred years, so the lead has settled on top of a dust layer, not on the glass itself.
CLAUDINE LOISEL: The first thick layer of deposit, we can say, has a small protection in one way. So, we have just to remove all the deposit, to clean this windows from the 19th century.
NARRATOR: Claudine examines deposits from windows around the cathedral. The samples reveal vital clues about the spread of the lead contamination.
CLAUDINE LOISEL: After the spire fell, the cloud of dust, lead and different particle, push in the other direction, so we are a little bit more protected in this area.
NARRATOR: The windows of the upper level, in the path of the lead cloud, have been most contaminated. The team takes out and transports these panels to this special laboratory, where they experiment with ways to remove the lead.
First, Claudine uses a precision vacuum cleaner to remove the hundred years of dust and most of the lead powder along with it.
CLAUDINE LOISEL: So, this is a good way to protect the conservator. You can control the action, the pressure on the glass and also on the painting.
NARRATOR: Then she uses water and cotton balls to remove the last of the lead.
CLAUDINE LOISEL: Of course, you need scientific evidence that it’s working.
NARRATOR: Claudine uses X-ray spectroscopy to determine exactly how many wipes it takes to bring the lead down to normal levels.
CLAUDINE LOISEL: So, we can identify each chemical element we have in the material.
NARRATOR: Too few wipes and the lead will remain; too many wipes and restoration will take longer than necessary.
CLAUDINE LOISEL: Okay, now the analyze is finished.
NARRATOR: After five wipes, Claudine checks to see if the glass is decontaminated.
CLAUDINE LOISEL: Okay, we have different chemical element, calcium, iron. And if we want to see the lead? There is no lead. After nine months, we can see a good solution, a good way to clean and to preserve the stained-glass windows from Notre Dame.
NARRATOR: The upper-level windows were not only in the path of the lead cloud, but also closest to the inferno. Claudine hunts for hairline cracks caused by thermal shock, the rapid heating and cooling of the glass.
CLAUDINE LOISEL: These cracks is due to the fire. This is a recent cracks and this is typical thermal shock.
NARRATOR: It looks like the upper-level stained glass will need to be painstakingly glued back together. But inside Notre Dame, the lower-level stained glass appears to have survived unscathed.
CLAUDINE LOISEL: And here we can see we have a good stability, adherence of the painting, so here is absolutely no thermal shocks. That’s a good news for us.
NARRATOR: Onsite, the teams of scientists meet the engineers and architects to share their findings.
CLAUDINE LOISEL: Hello, everyone. I would like to present the results of our studies to decontaminate the chapels.
NARRATOR: Once Claudine’s team has restored Notre Dame’s glasswork to its former glory, they may use a radical new preservation technique to safeguard it for future generations.
It’s being used on a huge scale, here, in northern England. This is York Minster; an 800-year-old Gothic masterpiece and home to the largest expanse of medieval stained glass in the U.K.: the Great East Window.
SARAH BROWN (Director, York Glaziers Trust): It is one of the largest windows ever made, anywhere in the medieval world. We’ve got glass from the 12th right through to the 18th century, in quite significant quantities. And it is really our national treasure house of stained glass.
NARRATOR: Engineers here are completing a $12-million project to protect York Minster’s stained glass from harmful U.V. rays and the corrosive effects of moisture.
SARAH BROWN: In modern stained glass conservation, we’re really doing as much as we can to keep both surfaces of the historic stained glass dry and stable. And that’s where our ventilated, environmental protective glazing comes into play.
MATTHEW NICKELS (Glass Conservator, York Glaziers Trust): You can see that I’m almost in. I think it’s just this last bit here.
NARRATOR: Matt Nickels is installing this new conservation system. He slots a protective clear glass exterior frame into the window opening.
MATT NICKELS: This goes into the original glazing groove, where the medieval glass would have been.
NARRATOR: This protective glazing prevents corrosive condensation from forming on the 800-year-old stained glass that will sit behind it.
MATT NICKELS: The gap created means that there’s air circulation running through. And when you’ve got air circulation, it’s regulating the temperature, which means that there’s less moisture on the glass.
NARRATOR: Each frame is custom made and takes great skill to fit.
MATT NICKELS: You don’t want to make it too small, because it’s going to obviously slide through. No two windows, are going to be the same.
NARRATOR: With the outer panel installed, they can reinstate the layer of medieval glass.
MATT NICKELS: They’re actually in fairly good condition considering they’re early 13th-century. There’s always the worry, whenever you’re handling glass like this, but you just got to make sure that you’re really, really careful. There’s nothing quite like seeing it with sunlight behind it, when you put it up like this. It’s quite magical, isn’t it?
NARRATOR: Techniques like this offer a glimpse of how scientists like Claudine may eventually preserve Notre Dame’s glass.
CLAUDINE LOISEL: This is the best way to protect stained glass windows, so it will be, for sure, an option to protect the windows for Notre Dame.
NARRATOR: Had the vaulting collapsed next to the windows, the glass could have been badly damaged. But luckily, the stone vaulting, which sits just under the timber and lead roof, protected the windows from the inferno above.
PHILIPPE VILLENEUVE: (Translated from French) Architecture of the Middle Ages, when they built the vaults, they’ve achieved their primary function, because it requires a roof which is separated from the rest of the cathedral by the vault. The vaults took the shock of the falling timber and the fire and the water used to extinguish the fire.
NARRATOR: The magnificent vaulting was built to be resilient, thanks to precise medieval craftsmanship, using over a thousand cubic yards of limestone. The arches work together to support the roof and stabilize the outer walls, but the intense heat from the fire and the collapsing spire took out 15 percent of the stone vaulting. Today, three 40-foot-wide holes and several smaller gaps mean the vaults could collapse at any moment.
The team collects, stores and catalogues the fallen stone in this tent, located alongside the cathedral. They may be able to use some of this stone to reconstruct the vaults, but it’s clear they’ll also need to source new stone.
Notre Dame is made up of many different types of limestone. Medieval masons chose hard limestone for the towers, pillars and outer walls, to build tall and hold up the roof. For the sculptures, they chose dense, fine-grained limestone that can be carved with great detail. And for the vaults, they selected softer, more porous limestone that’s light, but strong.
If the team rebuilding the vaults picks a limestone that is too heavy, the new vaults may not last as long as they should. geologist, Lise Leroux investigates what quarry this stone came from.
LISE LEROUX: We have some blocks coming from the collapse of the vault for study.
NARRATOR: This detective work will help the team source replacement stone that shares identical mechanical properties.
LISE LEROUX: We have to verify…
NARRATOR: The fallen vaulting stone contains a rare micro-fossil called orbitolites complanatus, a kind of plankton. Fossils, like this, are found in just one layer of rock. This will make sourcing new stone of the same type even trickier. Can they use this geological fingerprint to discover the original source of the vaulting stone?
LISE LEROUX: (Translated from French) Impressive.
NARRATOR: To find out, Lise and fellow Notre Dame scientist, Claudine Loisel venture deep beneath Paris. Hidden under the city streets is a rich source of limestone, a vast labyrinth of quarry tunnels. Lise and Claudine enter this maze two miles south of Notre Dame, in the famous catacombs.
CLAUDINE LOISEL: Ahh!
LISE LEROUX: Yes, it is surprising.
CLAUDINE LOISEL: (Translated from French) Oh, yeah, impressive.
LISE LEROUX: (Translated from French) These are our ancestors.
DANY SANDRON: In the late 18th century, the quarries were given a different purpose, and they housed bones from old cemeteries, which were inside the towns; cemeteries which were closed at the end of the 18th century for sanitary reasons.
NARRATOR: Amongst the bones, Lise and Claudine find traces left by the medieval miners.
LISE LEROUX: (Translated from French) The block is removed, and so we have the trace. They can square off the sides, and they used it in the construction of Notre Dame. And the strata height here, it dictates the height of the block that can be extracted. So, the original building stones that we have at Notre Dame are blocks with this height. The quarry imposes a constraint on the construction of Notre Dame.
CLAUDINE LOISEL: (Translated from French) You have life and death.
LISE LEROUX: Ah, perfect! Oui.
NARRATOR: The upper level of the quarry holds hard limestone with large, well-preserved fossils.
LISE LEROUX: These fossils are more characteristic of the limestones used for the pillars, the arch in Notre Dame, but not for the vault.
NARRATOR: Lise and Claudine hope to find a match for the soft vaulting stone in the lower level of the quarry.
LISE LEROUX: Now to look if we can find the specific microfossils. I’m not sure, because the surface is very rough, and it’s not so clear, because all of the state of the surface.
NARRATOR: The limestone here is softer, but Lise cannot see a match for the rare microfossil found in the Notre Dame vaulting sample. So, back in the lab, she takes a closer look at a sample of limestone from the lower level of the quarry.
LISE LEROUX: These little fossils, this one, this one, this one, are in fact some planktonic fossils, which are called “foraminifera.”
NARRATOR: It’s not the fossil signature she’s looking for. But then…
LISE LEROUX: Oh, this one here is orbitolites complanatus! This little planktonic fossil, is a “dating fossil,” which match with the stone coming from the vault. It’s a stratigraphic indicator, characteristic from the middle Lutetian, which is a geological age of deposit.
NARRATOR: Lise confirms the origin of the Notre Dame vaulting stone. It’s quarried from the deepest seams of limestone beneath Paris.
LISE LEROUX: It’s conclusive.
NARRATOR: But what about the harder limestone, used by medieval masons to build Notre Dame’s loadbearing pillars and arches? Another microfossil signature confirms the origin of this type, as well.
LISE LEROUX: The arches are built with a hard stone, with a resistant stone, to support the vault. And the vault, itself, is logically constructed with a lighter, more porous stone. And in the quarry located in Paris, we have this two kind of stone.
NARRATOR: Medieval masons knew exactly how to exploit the varying mechanical properties of the limestone for Notre Dame, knowledge passed down through the generations.
Sourcing more of the correct stone won’t be easy. The old quarries are no longer active. But engineers now know what limestone to look for. This will help them find a match in quarries outside Paris.
Stone is not the only raw material that will need to be replaced, as engineers reconstruct Notre Dame. The timber roof was also a medieval wonder. It was constructed from 25,000 cubic feet of timber, cut from 52 acres of oak. That’s approximately 1,300 trees.
For this reason, it was known as the “forest.” Every single oak in Notre Dame’s forest was handpicked for the physical properties needed in the roof structure, from dense straight oak for pillars, to curved oak for support arches. But the fire burned every beam in the forest.
Today, this intricate 550-ton timber jigsaw lies in ruins.
CATHERINE LAVIER (Timber Conservation Scientist): (Translated from French) This sublime roof we’d always known, an immense puzzle, made of wood, that goes back to the 13th century, it’s very emotional, very difficult to see all this gone in one go. It’s very hard to take.
NARRATOR: Almost 60 tons of the precious roof timber still lie precariously on top of the vaults. Despite the destruction, every single beam holds the history of Notre Dame. It has deep archaeological value.
It’s vital that workers forensically record the position where each beam fell, before they remove them. This helps them determine where it originally sat in the roof structure.
Now, these highly trained rope access technicians gear up to catalogue and clear the charred timber on the vaults.
ROPE ACCESS TEAM MEMBER #1: We’re going to try and finish this first zone here.
ROPE ACCESS TEAM MEMBER #2: Okay.
FERDINAND DE GUILLEBON (Rope Access Technician): It’s not possible to walk on the vaults. The structure is very precarious. They needed to create a way to access with ropes. We need to wear a special mask, because of the lead dust that we might inhale. We label the timbers, and we mark them with a code that the architects will be able to identify.
ROPE ACCESS TEAM MEMBER #1: Okay, number 96. Ninety-five is done and 96 is here.
NARRATOR: The team has their work cut out for them, there are thousands of separate pieces of timber to catalogue.
FERDINAND DE GUILLEBON: We are working day and night. We have a lot of work to do.
NARRATOR: They’ve already extracted around 4,000 pieces.
Timber scientist Catherine Lavier begins painstaking detective work to reveal how Notre Dame’s vast forest was originally assembled and could be rebuilt today.
CATHERINE LAVIER: Some pieces were very well preserved, because, as you see here, with different faces and another piece of wood is coming here, with a wooden joint here to assemble them. And it’s rather typical from the medieval period.
And here you have a mark of carpenters. So, they are sure that this piece with this piece are together. It’s very important for carpenters. They prepare the wood on the ground, and after that, they go to the roof and reassemble again.
Every carpenter has his own way to mark, but in general it’s based on the Roman numbers. But we can find some differences between teams of carpenters. We are very surprised to find that, because I thought everything will be destroyed, and finally, not.
NARRATOR: The tree rings of the timbers conceal further clues. Each ring represents one year of growth; a time-capsule of information about the life of the tree in that year. Catherine analyses core samples from Notre Dame’s roof trusses. She measures each ring to reveal the secret story of some of the original oak trees the structure was made from.
CATHERINE LAVIER: (Translated from French) This screen shows the size of each ring I measured. At the start of its life, you see it has very, very large rings, which corresponds to very rapid growth. Next, it experiences some rather more dramatic events, difficult years, when the rings are very thin, for example, a lot of rain and not enough sun and not enough nutrients. And then, the life of the tree continues until it’s cut down, around its 96th year.
NARRATOR: Catherine is gaining new insight into the types of trees best suited to rebuild the complex forest of Notre Dame.
This extraordinary challenge will require around 1,300 oak trees, craftspeople versed in the lost art of medieval carpentry practices, and a blueprint for possibly the most geometrically complex timber structure in Europe.
The one person who can unlock the lost forest’s geometrical secrets is architect Rémi Fromont. In 2014, Rémi spent the entire year mapping every inch of the timber.
RÉMI FROMONT: (Translated from French) It was a magical place to go in there. There was a smell, there was a very special atmosphere of light. We still had the traces of tools also on the woods. It sometimes seemed like they only left yesterday.
LIVIO DE LUCA: We are collecting photographs, 3D point clouds and the physical and chemical characterization of all the materials.
NARRATOR: The fire at Notre Dame triggers a race across France to 3D-scan historical monuments, inside and out. These represent a digital insurance policy to preserve French heritage.
The laser bounces off each contour in the room. The machine then measures the time it takes for the laser to return. Millions of measurements form a cloud of data, called a “point cloud.”
In 2016, researchers used this same technology to create a full point cloud of Notre Dame’s lost timber roof structure. This remarkable 3D scan will combine with Rémi’s 2014 survey in Livio’s digital twin for Notre Dame.
LIVIO DE LUCA: What we are producing today, will be, probably, the information useful for the next generations.
NARRATOR: The team now has the data they need to rebuild the timber roof with the exact same geometry. The new oak needed could come from forests like this.
Almost a third of France is covered with forest. Oak is a vital strategic resource throughout the Middle Ages and the Renaissance. Vast forests are needed to build cities and expand navies.
This is the Château de Beaumesnil in Normandy. It’s a National Historic Monument, built on the site of an 1,100-year-old castle.
RÉMY DESMONTS (Carpenter): (Translated from French) It was built in seven years. It’s something extraordinary for just seven years’ work!
NARRATOR: The château has seen better days. The curved beams that hold up the roof are close to collapse and must be replaced.
CÉLINE BERVILLE (Heritage Architect): (Translated from French) The wood grain has been cut through. This weakens the beam. And then you see that the beam is completely eaten away, the wood is degraded, eaten by the fungus.
NARRATOR: The restoration work here requires much of the same skill and knowledge it will take to rebuild Notre Dame’s lost forest. The timber has been chosen so the curve of the grain perfectly matches the curve of the new beam.
LEO ROUSSEAU (Carpenter): If you get a straight tree, which has a straight grain, and if you cut a curved piece of wood inside of this, so here is the fiber, so it can break, right there. But if you take the curved tree, so the grain follows the curve, obviously, so you keep all of the structural strength of the tree.
NARRATOR: The carpenters use an original beam as a template to mark out the new beam on the oak.
RÉMY DESMONTS: (Translated from French) Not bad. We can trace it out like that.
NARRATOR: The carpenters who built Notre Dame would be familiar with the tools this team uses to hew the raw timber.
LEO ROUSSEAU: So, after you split most of the wood, you use a broadax. They have a single bevel, long cutting edge, and the handle is offset. So, if you’re working, as you go down, your hand here, you see I’m not hitting this sharp edge.
NARRATOR: For skilled carpenters, cutting Notre Dame’s roof timbers with axes, compared to a modern sawmill, will take roughly twice the time; possibly too long.
This curved oak will be one of 10 the team needs to install as part of the château roof restoration. It sits alongside this 400-year-old original beam.
RÉMY DESMONTS: (Translated from French) This one was cut, probably 1635, ‘37; then this one, 2020. I hope our ancestors are happy with this.
NARRATOR: Just like the Notre Dame beams, the château’s original beam holds messages from the old carpenters.
RÉMY DESMONTS: (Translated from French) Extraordinary to find all these marks. It’s very old, and at the same time, it looks like it was done yesterday.
NARRATOR: French craftspeople have the oak, they have the skills, and they have the plans required to reconstruct Notre Dame’s vast forest of roof timbers.
It’s over a year since the fire ravaged Notre Dame Cathedral, and the investigators have not pinpointed the cause of the blaze. Immense challenges and uncertainties still lie ahead. The building is not yet out of danger.
Over the next 12 months, engineers must remove the melted scaffolding and seal the cathedral roof to make it watertight, then stabilize the weakened vaulting. It’s a monumental task. And rebuilding the entire cathedral could take much longer than the five years decreed by President Macron.
PATRICK CHAUVET: (Translated from French) Faced with such a drama, thankfully there’s hope.
RÉMI FROMONT: (Translated from French) We need faith for this project. It’s this building itself that generates this faith, even for atheists. And that’s something magical.
NARRATOR: Architects around the world have unleashed their imaginations to submit grand plans for what the new spire above Notre Dame could look like, from mirrored roofs with kaleidoscopic pinnacles and vast solar panels powering nearby buildings, to stained glass edifices, that will light up the Paris skyline. However Notre Dame is rebuilt, the unique collaboration of architects and scientists is rewriting how we understand the very fabric of this magnificent cathedral.
JOHN DICKAS: I think the fire, in some ways, helped remind a lot of people what an important part of our, sort of, shared history and shared culture this is.
NARRATOR: Soon, a complete digital twin of Notre Dame should allow future generations of craftspeople to maintain, protect and faithfully rebuild Notre Dame, preserving this world treasure for all time.
PHILIPPE VILLENEUVE: (Translated from French) I have only one obsession: save the cathedral, resurrect it and reopen it to the public.
FOR WINDFALL FILMS
EXECUTIVE PRODUCER
Carlo Massarella
PRODUCED BY
Alessandra Bonomolo
DIRECTED BY
Joby Lubman
NARRATED BY
Eric Meyers
EDITED BY
Hass Azzoug
Sarjit Bains
CAMERA
Joby Lubman
HEAD OF ANIMATION & VFX
Rob Hartel
ANIMATION
Fluid Pictures
PRODUCTION MANAGERS
Chloë Deverell
Laety Ducom
ASSISTANT PRODUCERS
Maria Alves
George Hill
JUNIOR PRODUCTION MANAGER
Sally Brown
HEAD OF PRODUCTION
Maria French
PRODUCTION EXECUTIVE
Zoë Glover
HEAD OF DEVELOPMENT
Leesa Rumley
DEVELOPMENT PRODUCER
Caroline Lee
BUSINESS AFFAIRS
Leonora Wolstencroft
Karen Shipway
PRODUCTION ACCOUNTING
Elizabeth Richards
Louise Chim
SHOOTING PRODUCERS AND DIRECTORS
Andrew Bailey
Steve Morgan
ADDITIONAL CAMERA
Mark Atwill
CAMERA ASSISTANT
Hugo Gastaud
TECHNICAL MANAGER
Philip Michael
ONLINE EDITOR
Simon Cruse
COLORIST
Enge Gray
AUDIO MIX
Danny Finn
LOCATION ASSISTANCE
Paris Musées and the Catacombes de Paris
ARCHIVE RESEARCHER
Morgane Barrier
ARCHIVAL MATERIAL
Alamy
Alexandre Fantozzi, AJ6 Architecture Properties Design
Andrew Tallon/Vassar College
AP Archive
Art Graphique & Patrimoine
BFM
Cai Zeyu & Li Sibei, GoArchitect LLC
CNRS/Ministry of Culture/Notre-Dame Science Unit
Eurl Summum Architecture
Le Figaro/Wladimir GARCIN BERSON
Les Pompiers de Paris, BSPP
Ministère de l’Intérieur - DICOM
Notre-Dame de Paris, si Loin si proche", directed by Valerie Manuel, France TV - CFRT 2012
Pond 5
Préfecture de Police de Paris
Rémi Fromont et Cédric Trentesaux
Screenocean/Reuters
The Conway Library, Courtauld Institute of Art
Valerie-Anne Maître
ViralHog/Chad Lansdell Strong
William Hall
SPECIAL THANKS
C2RMF
Carlo Blasi
Établissement public - Notre-Dame de Paris
Joé Naturel – Présidence de la République Française
Laboratoire de Recherche des Monuments Historiques
Le Collège des Bernardins
Marie Tallon
Mika Kaneishi
York Minster
FOR NOVA
NOVA SERIES GRAPHICS
yU + co.
NOVA THEME MUSIC
Walter Werzowa
John Luker
Musikvergnuegen, Inc.
ADDITIONAL NOVA THEME MUSIC
Ray Loring
Rob Morsberger
CLOSED CAPTIONING
The Caption Center
POST PRODUCTION ONLINE EDITOR
Lindsey Rundell Denault
SENIOR DIGITAL PRODUCER
Ari Daniel
DIGITAL MANAGING PRODUCER
Kristine Allington
DIGITAL PRODUCER
Emily Zendt
DIGITAL ASSOCIATE PRODUCERS
Ana Aceves
Arlo Pérez
DIGITAL PRODUCTION ASSISTANT
Lorena Lyon
DIRECTOR OF EDUCATION AND OUTREACH
Ralph Bouquet
DIGITAL PRODUCER
Alex Clark
OUTREACH MANAGER
Gina Varamo
PROGRAM MANAGER, NOVA SCIENCE STUDIO
Tenijah Hamilton
DIGITAL EDITOR, EDUCATION
Kara Norton
DIRECTOR OF AUDIENCE DEVELOPMENT
Dante Graves
DIRECTOR OF PUBLIC RELATIONS
Jennifer Welsh
SENIOR DIGITAL EDITOR
Sukee Bennett
DIGITAL EDITOR
Alissa Greenberg
NATIONAL PUBLICITY
DKC Public Relations
DIRECTOR OF NATIONAL AUDIENCE RESEARCH
Cory Allen
ASSOCIATE RESEARCHER
Christina Monnen
PRODUCTION COORDINATOR
Linda Callahan
PRODUCTION ASSISTANT
Angelica Coleman
LEGAL AND BUSINESS AFFAIRS
Susan Rosen
BUSINESS MANAGER
Elisabeth Frele
UNIT MANAGER
Saron Admasu
RIGHTS MANAGER
Hannah Gotwals
PARALEGAL
Sarah Erlandson
TALENT RELATIONS
Janice Flood
BROADCAST MANAGER
Nathan Gunner
SUPERVISING PRODUCER
Kevin Young
SENIOR PROMOTIONS PRODUCER AND EDITOR
Michael H. Amundson
POST PRODUCTION ASSOCIATE PRODUCER
Jay Colamaria
SENIOR EXECUTIVE PRODUCER, EMERITA
Paula S. Apsell
SENIOR SCIENCE EDITOR
Evan Hadingham
COORDINATING PRODUCER
Elizabeth Benjes
PROJECT DIRECTOR
Pamela Rosenstein
DEVELOPMENT PRODUCER
David Condon
NOVA PRODUCER
Caitlin Saks
SCIENCE EDITOR
Robin Kazmier
SENIOR SERIES PRODUCER
Melanie Wallace
DIRECTOR, BUSINESS OPERATIONS & FINANCE
Laurie Cahalane
EXECUTIVE PRODUCERS
Julia Cort Chris Schmidt
---
A NOVA Production by Windfall Films Ltd. (part of the Argonon Group) for WGBH Boston in association with BBC.
© 2020 Windfall Films Ltd (part of the Argonon Group) and the WGBH Educational Foundation.
All Rights Reserved
This program was produced by WGBH, which is solely responsible for its content. Some funders of NOVA also fund basic science research. Experts featured in this film may have received support from funders of this program.
Original funding for this program was provided by Draper, the David H. Koch Fund for Science, the NOVA Science Trust, and the Corporation for Public Broadcasting.
IMAGE: (Notre Dame fire, April 15, 2019)
© Benoit Tessier/Reuters
- Céline Berville, Luke Bisby, Sarah Brown, Patrick Chauvet, Ferdinand de Guillebon, Livio de Luca, Rémy Desmonts, John Dickas, Rémi Fromont, Catherine Lavier, Lise Leroux, Claudine Loisel, Matthew Nickels, Léo Rousseau, Dany Sandron, Philippe Villeneuve
Explore More

Saving Notre Dame

Great Cathedral Mystery

Building the Great Cathedrals

Saving Notre Dame's Stained Glass Masterpieces

Operation Bridge Rescue

Stabilizing Notre Dame's Famous Buttresses

Repairing Notre Dame's Vaults with Underground Quarries

3D models help preserve landmarks like Notre Dame

Moving a Wooden Covered Bridge
