 |
 |

|
Math's Hidden Woman
Following is the true story of Sophie Germain, an 18th-century woman who assumed a
man's identity in order to pursue her passion—attempting to prove Fermat's Last Theorem.
From FERMAT'S ENIGMA: The Epic Quest to Solve the World's Greatest Mathematical Problem
by Simon Singh
Published by Walker and Company
ISBN 0-8027-1331-9
To order call 1-800-289-2553
Pythagoras' theorem leads to one of the best understood equations in mathematics:
x2 + y2 = z2
There are many whole number solutions to this equation, e.g.,
32+ 42= 52
In the 17th century the French mathematician Pierre de Fermat set a
challenge for future generations of mathematicians—prove that there are no
whole number solutions for the following closely related family of equations:
x3 + y3 = z3
x4 + y4 = z4
x5 + y5 = z5
x6 + y6 = z6
etc.
Although these equations appear similar to Pythagoras' equation, Fermat's
Last Theorem claims that these equations have no solutions. The difficulty in
proving that this is the case revolves around the fact that there are an
infinite number of equations, and an infinite number of possible values for x,
y, and z. The proof has to prove that no solutions exist within this infinity
of infinities. Nonetheless, Fermat claimed he had a proof. The proof was never
written down, so the challenge has been to rediscover the proof of Fermat's
Last Theorem.
Monsieur Le Blanc
By the beginning of the 19th century, Fermat's Last Theorem had already
established itself as the most challenging problem in number theory.
Mathematicians had merely succeeded in showing that there are no solutions to
the following equations:
x3 + y3 = z3
x4 + y4 = z4
An infinite number of other equations remained, and mathematicians still had to
demonstrate that none of these had any solutions. There was no progress until a
young French woman reinvigorated the pursuit of Fermat's lost proof.
Sophie Germain was born on April 1, 1776 the daughter of a merchant,
Ambroise-Francois Germain. Outside of her work, her life was to be dominated by
the turmoil of the French Revolution. The year she discovered her love of
numbers, the Bastille was stormed, and her study of calculus was shadowed by
the Reign of Terror.
Although her father was financially successful, Sophie's family members were
not of the aristocracy. Had she been born into high society, her
study of mathematics might have been more acceptable. Although aristocratic
women were not actively encouraged to study mathematics, they were expected to
have sufficient knowledge of the subject in order to be able to discuss the
topic should it arise during polite conversation.
To this end, a series of text books were written to help young women understand
the latest developments in mathematics and science. Francesco
Algarotti was the author of Sir Isaac Newton's Philosophy Explain'd for the
Use of Ladies. Because Algarotti believed that women were only interested in
romance, he attempted to explain Newton's discoveries through the flirtatious
dialogue between a Marquise and her interlocutor. The interlocutor outlines the
inverse square law of gravitational attraction,
whereupon the Marquise gives her own interpretation on this fundamental law of
physics. "I cannot help thinking ... that this proportion in the squares of the
distances of places ... is observed even in love. Thus after eight days
absence, love becomes 64 time less than it was the first day."
Not surprisingly, this gallant genre of books was not responsible for inspiring
Sophie Germain's interest in mathematics. The event that changed her life
occurred one day when she was browsing in her father's library and chanced
upon Jean-Étienne Montucla's book History of Mathematics. The chapter
that caught her imagination was Montucla's essay on the life of Archimedes. His
account of Archimedes' discoveries was undoubtedly interesting, but what
particularly kindled her fascination was the story surrounding his death.
Archimedes had spent his life at Syracuse studying mathematics in relative
tranquillity, but when he was in his late 70s, the peace was shattered by
the invading Roman army. Legend had it that, during the invasion, Archimedes
was so engrossed in the study of a geometric figure in the sand that he failed
to respond to the questioning of a Roman soldier. As a result, he was speared
to death.
Germain concluded that if somebody could be so consumed by a geometric problem
that it could lead to their death, then mathematics must be the most
captivating subject in the world. She immediately set about teaching herself
the basics of number theory and calculus, and soon she was working late into
the night studying the works of Euler and Newton. But this sudden interest in
such an unfeminine subject worried her parents and they tried desperately to
deter her. A friend of the family, Count Guglielmo Libri-Carrucci dalla Sommaja,
wrote how Sophie's father confiscated her candles and clothes and removed any
heating in order to discourage her.
Only a few years later in Britain the young mathematician Mary Somerville
would also have her candles confiscated by her father who maintained that "we
must put a stop to this, or we shall have Mary in a straitjacket one of
these days." In Germain's case, she responded by maintaining a secret cache of
candles and wrapping herself in bed-clothes. Libri-Carrucci claimed that the
winter nights were so cold that the ink froze in the inkwell, but Sophie
continued regardless. She was described by some people as shy and awkward, but
undoubtedly she was also immensely determined. Eventually, her parents relented
and gave Sophie their blessing.
Germain never married and throughout her career her father funded her research
and supported her efforts to break into the community of mathematicians. For
many years, this was the only encouragement she received. There were no
mathematicians in the family who could introduce her to the latest ideas and
her tutors refused to take her seriously.
In 1794, the Ecole Polytechnique opened in Paris. It was founded as an academy
of excellence to train mathematicians and scientists for the nation. This would
have been an ideal place for Germain to develop her mathematical skills, except
for the fact that it was an institution reserved only for men. Her natural
shyness prevented her from confronting the academy's governing body, so instead
she resorted to covertly studying at the Ecole by assuming the identity of a
former student at the academy, Monsieur Antoine-August Le Blanc.
The academy's administration was unaware that the real Monsieur Le Blanc had
left Paris, and continued to print lecture notes and problems for him. Germain
managed to obtain what was intended for Le Blanc, and each week she would
submit answers to the problems under her new pseudonym.
Everything was going according to plan until the supervisor of the course,
Joseph-Louis Lagrange, could no longer ignore the brilliance of Monsieur Le
Blanc's answer sheets. Not only were Monsieur Le Blanc's solutions marvelously
ingenious but they showed a remarkable transformation in a student who had
previously been notorious for his abysmal mathematical skills. Lagrange, who
was one of the finest mathematicians of the nineteenth century, requested a
meeting with the reformed student and Germain was forced to reveal her true
identity. Lagrange was astonished and pleased to meet the young woman, and
became her mentor and friend. At last Sophie Germain had a teacher who could
inspire her, and with whom she could be open about her skills and ambitions.
Germain grew in confidence and she moved from solving problems in her
course work to studying unexplored areas of mathematics. Most importantly, she
became interested in number theory and inevitably she came to hear of Fermat's
Last Theorem. She worked on the problem for several years, eventually reaching
the stage where she believed she had made an important breakthrough. She needed
to discuss her ideas with a fellow number theorist and decided that she would
go straight to the top and consult the greatest number theorist in the world,
the German mathematician Carl Friedrich Gauss.
Gauss is widely acknowledged as being the most brilliant mathematician who has
ever lived. Germain had first encountered his work through studying his
masterpiece Disquisitiones arithmeticae, the most important and
wide-ranging treatise since Euclid's Elements. Gauss's work influenced
every area of mathematics, but strangely enough he never published anything on
Fermat's Last Theorem.
In one letter he even displayed contempt for the problem. His friend the
German astronomer Heinrich Olbers had written to Gauss encouraging him to
compete for a prize which had been offered by the Paris Academy for a solution
to Fermat's challenge: "It seems to me, dear Gauss, that you should get busy
about this." Two weeks later Gauss replied, "I am very much obliged for your
news concerning the Paris prize. But I confess that Fermat's Last Theorem as an
isolated proposition has very little interest for me, for I could easily lay
down a multitude of such propositions, which one could neither prove nor
disprove."
Gauss was entitled to his opinion, but Fermat had clearly stated that a proof
existed. Historians suspect that, in the past, Gauss had tried and failed
to make any impact on the problem, and his response to Olbers was merely a
case of intellectual sour grapes. Nonetheless, when he received Germain's
letters, he was sufficiently impressed by her breakthrough that he temporarily
forgot his ambivalence towards Fermat's Last Theorem.
Germain had adopted a new approach to the problem which was far more general
than previous strategies. Her immediate goal was not to prove that one
particular equation had no solutions, but to say something about several
equations. In her letter to Gauss she outlined a calculation which focused on
those equations in which n is equal to a particular type of prime number.
Prime numbers are those numbers which have no divisors. For example, 11 is a
prime number because 11 has no divisors, i.e. nothing will divide into 11
without leaving a remainder (except for 11 and 1). On the other hand, 12 is
not a prime number because several numbers will divide into 12, i.e., 2, 3, 4,
and 6. Germain was interested in those prime numbers p such that 2p + 1 is
also a prime number. Germain's list of primes includes 5, because 11 (2 x 5 + 1)
is also prime, but it does not include 13, because 27 (2 x 13 + 1) is not
prime.
For values of n equal to these Germain primes, she could show that there were
probably no solutions to the equation:
xn + yn = zn
By "probably" Germain meant that it was unlikely that any solutions existed,
because if there was a solution, then either x, y, or z would be a multiple of
n. This put a very tight restriction on any solutions. Her colleagues examined
her list of primes one by one, trying to prove that x, y, or z could not be a
multiple of n, therefore showing that for that particular value of n there
could be no solutions.
Germain's work on Fermat's Last Theorem was to be her greatest contribution to
mathematics, but initially she was not credited for her breakthrough. When
Germain wrote to Gauss she was still in her 20s, and, although she had gained a
reputation in Paris, she feared that the great man would not take her seriously
because of her gender. In order to protect herself Germain resorted once again
to her pseudonym, signing her letters as Monsieur Le Blanc.
Her fear and respect for Gauss is shown in one of her letters to him:
"Unfortunately, the depth of my intellect does not equal the voracity of my
appetite, and I feel a kind of temerity in troubling a man of genius when I
have no other claim to his attention than an admiration necessarily shared by
all his readers." Gauss, unaware of his correspondent's true identity,
attempted to put Germain at ease and replied: "I am delighted that arithmetic
has found in you so able a friend."
Germain's contribution would have been forever wrongly attributed to the
mysterious Monsieur Le Blanc were it not for the Emperor Napoleon. In 1806,
Napoleon was invading Prussia and the French army was storming through one
German city after another. Germain feared that the fate that befell Archimedes
might also take the life of her other great hero Gauss, so she sent a message
to her friend, General Joseph-Marie Pernety, asking that he guarantee Gauss's
safety. The general was not a scientist, but even he was aware of the world's
greatest mathematician, and, as requested, he took special care of Gauss,
explaining to him that he owed his life to Mademoiselle Germain. Gauss was
grateful but surprised, for he had never heard of Sophie Germain.
The game was up. In Germain's next letter to Gauss she reluctantly revealed
her true identity. Far from being angry at the deception, Gauss wrote back to
her with delight:
But how to describe to you my admiration and astonishment at seeing my
esteemed correspondent Monsieur Le Blanc metamorphose himself into this
illustrious personage who gives such a brilliant example of what I would find
it difficult to believe. A taste for the abstract sciences in general and
above all the mysteries of numbers is excessively rare: one is not astonished
at it: the enchanting charms of this sublime science reveal only to those who
have the courage to go deeply into it. But when a person of the sex which,
according to our customs and prejudices, must encounter infinitely more
difficulties than men to familiarize herself with these thorny researches,
succeeds nevertheless in surmounting these obstacles and penetrating the
most obscure parts of them, then without doubt she must have the noblest
courage, quite extraordinary talents and superior genius.
Sophie Germain's correspondence with Carl Gauss inspired much of her
subsequent work but, in 1808, the relationship ended abruptly. Gauss had been
appointed Professor of Astronomy at the University of Göttingen, his
interest shifted from number theory to more applied mathematics, and he no
longer bothered to return Germain's letters. Without her mentor, her confidence
began to wane and within a year she abandoned pure mathematics.
Although she made no further contributions to proving Fermat's Last Theorem,
others were to build on her work. She had offered hope that those equations in
which n equals a Germain prime could be tackled, however the remaining values
of n remained intractable.
After Fermat, Germain embarked on an eventful career as a physicist, a
discipline in which she would again excel only to be confronted by the
prejudices of the establishment. Her most important contribution to the
subject was "Memoir on the Vibrations of Elastic Plates," a brilliantly
insightful paper which was to lay the foundations for the modern theory of
elasticity.
As a result of this research and her work on Fermat's Last Theorem, she
received a medal from the Institut de France and became the first woman, who
was not a wife of a member, to attend lectures at the Academy of Sciences.
Then, towards the end of her life, she re-established her relationship with
Carl Gauss, who convinced the University of Göttingen to award her an
honorary degree. Tragically, before the university could bestow the honor upon
her, Sophie Germain died of breast cancer.
H.J. Mozans, an historian and author of Women in Science, said of Germain:
All things considered, she was probably the most profoundly intellectual woman
that France has ever produced. And yet, strange as it may seem, when the state
official came to make out her death certificate, he designated her as a
"rentière-annuitant" (a single woman with no profession)—not as a
"mathématicienne." Nor is this all. When the Eiffel Tower was erected,
there was inscribed on this lofty structure the names of seventy-two savants.
But one will not find in this list the name of that daughter of genius, whose
researches contributed so much toward establishing the theory of the elasticity
of metals—Sophie Germain. Was she excluded from this list for the same
reason she was ineligible for membership in the French Academy—because she
was a woman? If such, indeed, was the case, more is the shame for those who
were responsible for such ingratitude toward one who had deserved so well of
science, and who by her achievements had won an enviable place in the hall of
fame.
H. J. Mozans, 1913
Photos: (1) Stock Montage, Inc.; (2) Archives de l'Academie des Sciences;
(3) © Bibliotheque de l'Ecole polytechnique; (4) Corbis-Bettmann.
Andrew Wiles |
Math's Hidden Woman |
Pythagorean Puzzle
Resources |
Guide |
Transcript |
Proof Home
Editor's Picks |
Previous Sites |
Join Us/E-mail |
TV/Web Schedule
About NOVA |
Teachers |
Site Map |
Shop |
Jobs |
Search |
To print
PBS Online |
NOVA Online |
WGBH
© | Updated November 2000
|
|
|